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Abstract: We study corrections to the anomalous mass dimension and their effects in

the Seiberg duality cascade in the Klebanov-Strassler throat, where N = 1 supersym-

metric SU(N + M) × SU(N) gauge theory with bifundamental chiral superfields and a

quartic tree level superpotential in four dimensions is dual to type IIB string theory on

AdS5 × T 1,1 background. Analyzing the renormalization group flow of the couplings on

the gauge theory side, we propose specific corrections to the anomalous mass dimension.

Applying gauge/gravity duality, we then show that the corrections reveal structures on the

supergravity side with steps appearing in the running of the fluxes and the metric. The

“charges” at the steps provide a gravitational source for Seiberg duality transformations.

The cosmological implication of the duality cascade and the gauge/gravity duality on the

brane inflationary scenario and the cosmic microwave background radiation is pointed out.
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1. Introduction

Recent developments in flux compactification in string theory have provided us with many

explicit realizations of the brane world scenario with stabilized moduli [1, 2]. In a typical

solution in type IIB theory, the compactified manifold has a number of warped throats. It

is likely that our standard model particles are open string modes of a stack of D-branes

sitting at the bottom of such a throat. A prime example of such a throat is the Klebanov-

Strassler (KS) throat [3]; i.e., a warped deformed conifold in type IIB theory on AdS5×T 1,1

background. Its gauge theory dual is N = 1 supersymmetric SU(N + M) × SU(N) with

bifundamental chiral superfields and a quartic tree level superpotential which undergoes a

cascade of Seiberg duality transformations [4]. Here, we like to explore the properties of

such a throat in some details. We will start with studying the running of the couplings in

the gauge theory and calculate corrections to the anomalous mass dimension which dictate

the flow of the gauge theory. The corrections depend on the ranks of the gauge groups

in the duality cascade. We then apply gauge/gravity duality and find that including the

corrections to the anomalous dimension on the gauge theory side reveals step-like structures

in the metric and the fluxes on the gravity side.
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These steps may be observable in cosmology. Implications of sharp features and/or

non-Gaussianity in the cosmic microwave background radiation due to steps in the inflaton

potential have been studied [5, 6]. It has become clear that the brane inflationary scenario

in string theory is quite robust [7]. Here, the inflaton is simply the position of the D3-brane.

In the simple but realistic KKLMMT scenario, inflation takes place as a D3-brane moves

down a warped throat [8]. The duality cascade feature shows up in the D3-brane potential

in the warped geometry as steps. Such steps in the inflaton potential can introduce sharp

features in the cosmic microwave background radiation, which may have been observed

already [9, 10]. So the steps in the throat, though small, can have distinct observable

stringy signatures in the cosmic microwave background radiation. This point is perhaps

best expressed by quoting WMAP [11] : “a very small fractional change in the inflaton

potential amplitude, c ∼ 0.1%, is sufficient to cause sharp features in the angular power

spectrum.” The possibility of detecting and measuring the duality cascade is a strong

enough motivation to study the throat more carefully. Although both Seiberg duality

and gauge/gravity duality are strongly believed to be true, neither has been proven; so

a cosmological test is highly desirable. This will also provide strong evidence for string

theory. The steps also show up in the Dirac-Born-Infeld action for brane inflation, which

may be observed separately [12].

To find the step structure on the gravity side, we shall use a gauge/gravity duality

mapping between the couplings in the gauge theory and the dilaton and the backreaction

potential in the gravity theory. On the gauge theory side, as the theory flows towards the

infrared (IR), the larger of the two gauge factors undergoes a Seiberg duality transition

as it becomes strongly coupled while the weaker factor is treated as a flavor symmetry:

SU(N + M) with 2N flavors → SU(2N − (N + M)) = SU(N − M) with 2N flavors [4].

Repeating such transformation, the SU(N + M)× SU(N) gauge theory undergoes a series

of Seiberg duality transitions as it flows towards the IR; i.e., the bottom of the throat. This

is the duality cascade. At the lth step (l = 1, 2, . . .), the gauge theory makes the transition

from the lth region; i.e., SU(N + M − (l − 1)M) × SU(N − (l − 1)M) to the (l + 1)th

region with SU(N + M − lM) × SU(N − lM) gauge group. This duality cascade should

lead to steps in the fluxes and the metric in the gravity side. To see this, let us first look

at the value of the anomalous mass dimension γ, since the renormalization group flow of

the couplings depends crucially on it. The M = 0 case is the conformal Klebanov-Witten

(KW) model [13], where γ0 = −1/2. Turning on M breaks the conformal symmetry and so

should lead to a correction to γ. Intuitively, when N ≫ M , this correction is expected to

be small and so is usually neglected. Here we find interesting physics associated with this

correction to the anomalous dimension. Furthermore, this correction becomes substantial

as we approach the IR limit.

Since the gauge theory has the discrete symmetry M → −M , N → N + M , γ

must be even under this symmetry and so its leading order correction must have the

form M2/N(N + M). On the other hand, if we turn off the superpotential, the two

gauge couplings will have individual fixed points (when the other group is weakly cou-

pled and is treated as a flavor symmetry) provided γN+M = −1/2 − 3M/2N and γN =

−1/2 + 3M/2(N + M), respectively. So, when the superpotential is turned back on, we
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expect the common γ to be somewhere in between, and the renormalization group flow of

the couplings take place somewhere in between too. Since the above symmetry maps γN+M

and γN into each other, we propose that γ should be the symmetrization (i.e., average)

of γN+M and γN . Similarly, after l steps in the Seiberg duality cascade, the gauge theory

becomes SU(N + M − lM) × SU(N − lM), with the corresponding anomalous dimension,

γ = −1

2
− 3M2

4N(N + M)
→ −1

2
− 3M2

4(N − lM)(N + M − lM)
(1.1)

Thus γ jumps from one value to another value as the renormalization group flow passes

a Seiberg duality transition. It is this jump in γ which causes the steps in the metric

and in the fluxes on the gravity side as one moves towards small r, which is roughly the

distance away from the bottom of the throat. Note that, towards the bottom of the throat,

l → N/M , the correction in γ is no longer negligible. For the anomalous dimension to

stay finite in the N = KM case, l = 1, 2, . . . ,K − 1. That is, there are only K − 1

steps in the Seiberg duality cascade, and the infrared flow from SU(3M) × SU(2M) to

SU(2M) × SU(M) takes γ = −7/8. Of course, higher order corrections may be important

when l is large (i.e., when the effective K is not large). Note that the correction term

in (1.1) blows up for l = K. This divergence leads to an infinite size step. Since higher

order corrections have to obey the above discrete symmetry, they will diverge here too. This

may signal a breakdown of perturbative corrections to the anomalous dimension in powers

of M2/(N − lM)(N + M − lM). Alternatively, to avoid this divergence, this may signal

that the Seiberg duality transition stops at SU(2M) × SU(M). This latter interpretation

means that the theory flows to a baryonic branch rather than to a confining branch.

In the absence of the corrections to the anomalous mass dimension (1.1), the Seiberg

duality cascade is completely smooth when one looks at the geometry in the supergravity

side. On the gauge theory side, we see that one of the gauge couplings in the renormalization

group flow goes from small to large between duality transformations. Since the anomalous

dimension comes in the flow of the dilaton and the backreaction potential and its magnitude

changes across Seiberg duality transitions, the warp factor has steps on the supergravity

side. Of course, each step should have a width (proportional to the step position), so that

steps are actually smoothed out. The resulting warp factor has a cascading behavior that

agrees with the picture presented in [14].

Let us consider the potential felt by a probe D3-brane. The running of the dilaton

leads to a D3-brane potential, since the NS-NS coupling does not cancel the RR coupling.

(This correction is of order 1/K.) Since this potential also involves the warp factor, the

D3-brane potential has a step-like feature. The size of the step in the D3 potential VD3

for large K is estimated to be (with string coupling gs),

δVD3

VD3
≃

(

3gsM

8π
− 1

)

1

K3
. (1.2)

Here, the steps appear as infinitely sharp. This is clearly a consequence of the approxima-

tion used here. In reality, we expect the steps to spread, so the potential has a cascading

feature. We expect the sharpness of a step to be dictated by the strong interaction scale Λ
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there. So, in general, we expect this multi-step feature to be generic; as we approach the

infrared, the step size grows (as the effective K decreases) and becomes sharper (as Λ ∼ r

decreases). The spacings between steps are roughly equal as a function of ln r for large

effective K. These features may show up in brane inflation as signature of the Seiberg

duality transition and the gauge/gravity duality in string theory.

Note that the anomalous dimension (1.1) is not the result of a rigorous derivation. We

expect that further improvement on the anomalous dimension will introduce a Λ depen-

dence. Since the warp factor we have here is not from an explicit solution of the SUGRA

equations, and we do expect a correction to the gauge/gravity duality dictionary that is not

included here, so the result presented here should be treated as tentative only. Also, the

quantitative properties of the warp factor (and so the inflaton potential) may be sensitively

dependent on the details of the warped geometry of the throat. On the other hand, this

cascading feature should be quite generic even if VD3 itself can be quite sensitive to the

details of the model.

The rest of this paper is organized as follows. First we give a brief background review.

We then present the details on the determination of the anomalous mass dimension and its

implications on the renormalization group flow. A study of the implication in the gravity

side is done on the setting of a singular conifold which is a good approximation to the

deformed geometry in the UV region near the edge of the throat. This is good enough for

our purpose here as it captures the important features of the physics: the steps with their

order of magnitudes and radial locations. We see that the dilaton and the 2-form NS-NS

potential run with kinks and the NS-NS flux has steps. This leads to steps in the warp

factor. We write down the D3-brane world volume action, which is suitable for the study of

new features in the KKLMMT inflationary scenario. We comment on the mapping of the

flow of the gauge theory to the supergravity flow, suggesting that the mapping/dictionary

in the gauge/gravity duality should have corrections as well. We will then continue with

analyzing the supergravity side using SU(3) structures and see how the corrections on

the gauge theory side could give rise to geometric obstructions on the supergravity side

which provide special locations and sources for Seiberg duality transformations. A full

supersymmetric solution on the supergravity side containing the corrections will involve a

detailed analysis of the supergravity equations of motion and their solutions and we will

not attempt to do that here. We will conclude with some remarks.

2. Brief review

Klebanov and Witten found, shortly after the first example of a dual gauge/gravity theory

was given by Maldacena [15], Gubser, Klebanov and Polyakov [16], and Witten [17], that

type IIB string theory with a stack of N D3-branes on AdS5 × T 1,1 was dual to N = 1

supersymmetric SU(N)×SU(N) conformal gauge theory with bifundamental chiral super-

fields A1 and A2 transforming as (¤, ¤̄) and B1 and B2 transforming as (¤̄, ¤) and a

quartic tree level superpotential [13]. The quartic tree level superpotential in this theory
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is given by

Wtree = w

(

(A1B1)(A2B2) − (A1B2)(A2B1)

)

, (2.1)

where color indices from the same gauge group are contracted and w is the tree level

coupling. Let us define the classical dimensionless coupling related to the tree level coupling

w by η = ln(w/µ1+2γη ), where µ has the dimension of mass. The physical β functions of

the two gauge couplings are βg = 3N − 2N(1− γg), and that of η is given by βη = 1 + 2γη ,

where the γs are the anomalous mass dimensions. Although the superpotential breaks the

flavor symmetry to its diagonal version, there is enough symmetry left so that there is a

common anomalous mass dimension, that is, γ = γη = γg. The theory has a nontrivial

conformal fixed point, where the physical β functions of the two gauge couplings associated

to the two group factors in SU(N) × SU(N) and that of η all vanish. This happens for

the same value of the anomalous mass dimension, namely γ0 = −1/2. So the theory is

conformal with this value of γ, which is independent of N . The stack of D3-branes induces

a 5-form R-R flux and the supergravity geometry is a warped pure AdS5 × T 1,1.

In the KS construction, in a series of papers by Klebanov and collaborators (with

Gubser [18], with Nekrasov [19], with Tseytlin [20] and with Strassler [3]), an additional

M number of D5-branes are wrapped near the tip over the S2 cycle of T 1,1. See [21] for a

review. These wrapped D5-branes become fractional D3-branes localized at the apex of the

conifold. This enhances the gauge theory to SU(N+M)×SU(N) with A1, A2 ∼ (¤, ¤̄) and

B1, B2 ∼ (¤̄, ¤). This theory with the quartic tree level superpotential given by (2.1) is

dual to type IIB string theory on a warped deformed conifold, with AdS5×T 1,1 background.

In this case, there is no value of common anomalous dimension that makes the physical

β functions of the couplings vanish simultaneously; that is, the addition of the fractional

branes makes the theory nonconformal. The fractional branes induce 3-form R-R flux

through the S3 cycle of T 1,1. This flux, considered as a perturbation of the AdS5 × T 1,1

background, induces a 2-form backreaction potential which varies with the radius of the

T 1,1 and produces a logarithmic flow. It was argued that this theory undergoes a cascade

of Seiberg duality transformations with the duality transformation alternating between the

two gauge group factors. The flow of the couplings would continue until, in the case where

N is integral multiple of M , SU(2M) × SU(M) is left. At this point two different possible

routes are discussed in the literature. In one case, a pure SU(M) gauge theory is left in the

infrared which undergoes confinement via gaugino condensation [3]. On the string theory

side, the confinement corresponds to a deformation of the tip of the cone via geometric

transition whereby the S2 cycle is blown-down and the S3 is blown-up with 3-form R-R

flux through it. There is also a second possible route for the cascade ending in a baryonic

branch of SU(2M)×SU(M) with a quantum deformed moduli space and a massless axionic

moduli field [22]. Our work here confirms that the second route is the preferred one.

Assuming that the duality cascade picture is a correct description of the gauge theory,

we start with determining the corrections to the anomalous dimension. Once we find the

corrections to the anomalous dimension, we will study the effects on the supergravity side on

the setting of the singular conifold. The singular conifold geometry is a good approximate

description in the UV region near the edge of the throat which is enough for our purpose of
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finding the steps and the corresponding sizes. We find that the leading corrections in M/N

come at orders expected from flux backreaction estimates. For instance, the leading order

correction to the anomalous mass dimension comes at O(M2/N2), the gauge coupling β

functions receive leading O(M2/N) corrections and the dilaton runs at O(M2/N). This

is consistent with dual supergravity flux backreaction estimates [19, 20] where the leading

order corrections to the anomalous dimension is expected to come at most at O(M2/N2).

The magnitude of the corrections changes after each duality transformation as the matter

content of the theory changes and this introduces steps in the backreaction H3 flux and

in the warp factor. In e−Φ for the dilaton and in the B2 NS-NS potential, it is the slope

in the logarithmic running which changes at the cascade steps. The corrections grow as

the cascade proceeds and the difference in the ranks of the gauge groups gets bigger. Our

premise of a changing anomalous dimension as the duality cascade proceeds and the matter

content of the theory changes is consistent with the picture of the theory flowing to the

baryonic branch with SU(2M)×SU(M). Here the reason for the flow to a baryonic branch

is because an additional Seiberg duality transformation would require an infinite “charge”

at the step.

3. Seiberg duality cascade

Let us consider the N = 1 supersymmetric SU(N + M)× SU(N) gauge theory with chiral

superfields transforming as A1, A2 ∼ (¤, ¤̄) and B1, B2 ∼ (¤̄, ¤) in the KS construction.

The quantity γ = γA + γB stands for the anomalous dimension of any one of the objects

(AiBj) made out of the bifundamental chiral superfields, which contains one A and one B

superfields and which must have the same anomalous dimension because of SU(2) global

flavor symmetry in the theory. Let us denote the gauge coupling of the larger group, which

is SU(N + M) in the 1st region, by g1, and that of the smaller group, which is SU(N)

in the 1st region, by g2, and define T1 ≡ −2πiτ1 = 8π2/g2
1 and T2 ≡ −2πiτ2 = 8π2/g2

2 .

Suppose we start with taking one gauge group as a weakly coupled gauge theory relative

to the other, then we can treat that weaker group as a flavor symmetry. The running of

the physical couplings [23] with appropriate normalization of the gauge chiral superfields

can then be written as

β1 = µ
dT1(1)

dµ
= 3(N + M) − 2N(1 − γ1(1)), (3.1)

β2 = µ
dT2(1)

dµ
= 3N − 2(N + M)(1 − γ2(1)), (3.2)

and

βη = µ
dη(1)

dµ
= 1 + 2γη(1), (3.3)

where we have not yet identified the γs. We have put different indices on γ1(l) in (3.1), on

γ2(l) in (3.2) and on γη(l) in (3.3) since the two gauge groups have different ranks and “see”

different numbers of flavors and would tend to flow with different anomalous dimensions.

The number “1” in the parentheses denotes the l = 1st region, in the UV region just before

the first duality transformation in the cascade.

– 6 –
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According to Seiberg duality, N = 1 supersymmetric SU(N) electric gauge theory with

Nf ∈ (3N/2, 3N) flavors, which becomes strongly coupled in the IR, flows to a nontrivial

conformal IR fixed point where it joins a dual SU(Nf − N) magnetic gauge theory with

Nf flavors. Now if we consider the SU(N + M) gauge theory and think of the other

SU(N) gauge group as a weakly gauged flavor symmetry, we have N = 1 supersymmetric

SU(N + M) gauge theory with 2N flavors; its running is faster than the running of an

SU(N) gauge theory with 2(N + M) flavors. Therefore, the SU(N + M) gauge theory

would get strongly coupled faster in the IR and following Seiberg duality the appropriate

description of the theory in this region is in terms of a weaker dual magnetic theory. The

question of interest to us is the effective value of the anomalous dimension which dictates

the flow. Although it is the SU(N + M) factor that undergoes duality transformation

in the first step of the cascade, the flow cannot be dictated simply by the fixed point of

SU(N + M) gauge theory with 2N flavors for two reasons. First, the SU(N) group factor

which gives a flavor symmetry to SU(N +M) would itself get strongly coupled during part

of the flow. Second, the running of the tree level coupling has a fixed point for anomalous

dimension γη = −1/2. In fact, if we consider the two flows separately, the SU(N + M)

factor tends to make γ < −1/2 while the SU(N) factor tends to make γ > −1/2, and

the strengths are slightly different and that is where the corrections to the anomalous

dimension will originate. Consider the non-trivial IR fixed point of the gauge couplings in

the nonperturbative regime. The anomalous dimension γ1(1) that would follow from the

fixed point of SU(N + M) with 2N flavors (β1 = 0) is

γ1(1) = −1

2
− 3

2

M

N
. (3.4)

Similarly, the anomalous dimension γ2(1) that would follow from the fixed point of SU(N)

with 2(N + M) flavors (β2 = 0) is

γ2(1) = −1

2
+

3

2

M

N + M
. (3.5)

The duality transformation in the first step of the cascade occurs in the SU(N + M)

factor because it would run faster, when the two gauge factors are looked at separately.

In terms of the anomalous dimensions, it receives more deviation from −1/2 than SU(N)

does. The effective value of anomalous mass dimension which guides the running of the

physical couplings should lie somewhere in between. The gauge theory has the obvious

symmetry M → −M , N → N +M . Clearly, γ should be even under this symmetry and so

cannot depend on M/N at first order. Note that this symmetry M → −M , N → N + M

interchanges γ1(1) (3.4) and γ2(1) (3.5), so that their symmetrization is invariant under

this symmetry, i.e.,

γ(1) = −1

2
− 3

4

M2

N(N + M)
. (3.6)

That is, γ is the average of γ1 and γ2. Indeed, we shall see that this leads to results

consistent with dual supergravity flux backreaction estimates [19, 20] where the leading

order corrections to the anomalous dimension is expected to come at most at O(M2/N2).
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Moreover, it gives a picture with the duality cascade ending in a baryonic branch consistent

with the discussions in [22, 21, 24].

Note that one may consider an alternative proposal that still preserves the above

symmetry. Since γη = −1/2 already yields a vanishing βη , γ = (γ1+γ2+cγη)/(2+c), so that

the coefficient in the correction in the anomalous dimension (3.6) becomes 3/4 → 3/2(2+c).

For generic c, this coefficient remains non-zero and positive, so most of the qualitative

discussions below still hold.

The fact that correction in (3.6) comes in the form M2/(N(N + M)) is dictated by

the M → −M , N → N +M symmetry and the factor of −3/4 comes from the assumption

that the effective value of anomalous dimensions which dictates the flow must lie between

γ1 and γ2 and the averaging. Our conclusions including that the gauge theory cascade

ends in SU(2M)×SU(M) depend on the form of M/N combination dictated by symmetry.

Corrections of order O(M/N) to the anomalous dimension were discussed in [14]. The

corrections to the anomalous dimension we have here come at order O(M2/N2). Moreover,

α′ corrections of order O(M4/N4) near the bottom of the throat were discussed in [25]. Our

interest here is classical supergravity and the constraints from the gauge/gravity duality

are N ≫ 1, M ≫ 1, gsN ≫ 1 and fixed. One also needs gsM not to be too small to trust

the supergravity side at smaller r where the ranks of the gauge groups become of order

M . We still want M to be a small perturbation on N , M ≪ N . Our correction is smallest

in the early stage of the flow where the rank of the gauge theory is SU(N + M) × SU(N)

and stringy loop corrections would come at O(gs) ∼ 1/N . Our corrections are bigger than

loop corrections so far as 1/N < M2/N2 or M2 > N . In the bottom region of the throat,

where Neff ∼ M and the ’t Hooft coupling is ∼ gsM , stringy loop corrections would be

O(gs) ∼ 1/M and our corrections are bigger than loop corrections, since 1/M < 1.

The resulting gauge theory after the first duality transformation is SU(N−M)×SU(N)

and now the running of the SU(N) factor would be faster and it is its turn for a duality

transformation as the renormalization group flows towards the IR. Now consider the gauge

group SU(N − (l − 2)M) × SU(N − (l − 1)M) in the lth region approaching the lth step

in the duality cascade. For odd l, it is the gauge group whose parent is the gauge factor

SU(N +M) which undergoes a duality transformation, while for even l it is the one with the

SU(N) parent. It is convenient to use g1 for the stronger gauge coupling which corresponds

to the gauge group that undergoes a duality transformation and g2 for the other from now

on. Again treating one gauge group as a flavor symmetry to the other, we have, for the

flow from the (l − 1)th to lth duality transformations,

γ1(l) = −1

2
− Cl−1, (3.7)

γ2(l) = −1

2
+ Cl−2, (3.8)

where

Cl ≡
3

2

M

N − lM
. (3.9)
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The anomalous dimension for the lth region in the cascade then follows from the sym-

metrization of the two,

γ(l) = −1

2
− 1

3
Cl−2Cl−1 = −1

2
− 3M2

4(N + 2M − lM)(N + M − lM)
. (3.10)

Now we are ready to identify the effective values of anomalous dimensions which dictate

the flow,

γ1(l)eff = γ2(l)eff = γη(l)eff = γ(l). (3.11)

With this common value of γ(l) given by (3.10), (3.1), (3.2) and (3.3) become

µ
dT1(l)

dµ
= 3M − Cl−2M, (3.12)

µ
dT2(l)

dµ
= −3M − Cl−1M, (3.13)

µ
dη(l)

dµ
= −2

3
Cl−2Cl−1. (3.14)

Thus, the effective running of the couplings makes g1 get stronger while g2 gets weaker as

the theory flows to the IR. In some region during the flow the two couplings have about

equal strength. The dimensionless tree level coupling w after the duality transformation

goes like the inverse of that before the transformation and the corresponding β function

changes sign. As the magnitude of the anomalous dimension across each step of the cascade

changes because the changing matter content of the cascading theory, so do the coefficients

in the logarithmic running of the couplings. We see from the β functions in (3.12) and (3.13)

that the physical running of the gauge couplings has appropriate feature with O(M2/N)

corrections. We will later discuss the running of the gauge couplings further.

Let us check if the magnitudes of the anomalous mass dimensions we have here

are within range for Seiberg duality. The mass dimension of O ≡ (A1B1)(A2B2) −
(A1B2)(A2B1), d[O], for the flow from the lth to the (l + 1)th duality transition points

is

d[O] = 4 + 2γ = 3 − 3M2

2(N − lM)(N + M − lM)
. (3.15)

For the flow involving N
M − 1 duality transitions, we have 9

4 ≤ d[O] ≤ 3 − 3
2

M2

N(N+M) . For

the mesons, 9
8 ≤ d[(AiBj)] ≤ 3

2 − 3
4

M2

N(N+M) . Thus the operator O is relevant throughout

the flow. Note that the mesons have mass dimension d[(AiBj)] ≥ 9
8 and this is consistent

with the ≥ 1 bound for the mass dimension of scalars at a conformal fixed point. Here the

theory flows nearby such a fixed point. The mass dimension d[(AiBj)] changes from 11
8 to

9
8 across the last ( N

M − 1)th duality transition and a further duality transformation would

have made the mass dimension of the mesons < 1 which would be inconsistent. Here,

d[(AiBj)] actually diverges for l = N/M . To avoid this, the duality cascade should have

only K − 1 transitions and ends with SU(2M) × SU(M).
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4. Supergravity side

4.1 Type IIB supergravity action

Type IIB supergravity is the effective low energy background of type IIB strings. In

this section we want to review and write down a summary of the action and the general

equations of motion of type IIB supergravity consisting the fields of interest to us here.

The point here is to see the general relations among the fluxes and the metric. At the

same time we will see some of the special cases in which the equations reduce and become

simpler to deal with directly.

The pair of 16 component spinors of N = 2 supersymmetry in ten dimensions have the

same chirality in IIB and the corresponding spinor representation can be written as 16⊕16.

The nonperturbative description of strings contains Dp-branes, which have p spatial and 1

time dimensions. In the IIB case, p is constrained to take on odd numbers. Our interest here

is IIB backgrounds in the presence of D3- and D5-branes, and in particular on AdS5 ×T 1,1

background with the D5-branes wrapping the S2 cycle of T 1,1 near the tip. The gauge

theory dual to this supergravity theory is a nonconformal N = 1 supersymmetric SU(N +

M)× SU(N) with bifundamental chiral superfields and a quartic tree level superpotential.

The flow of the theory induces a backreaction 2-form NS-NS potential. The relevant field

content of type IIB supergravity are a dilaton Φ, RR 0-, 2- and 4-forms C0, C2 and C4,

and NS-NS 2-form B2, with corresponding fluxes F1 = dC0, F3 = dC2, F5 = dC4 and

H3 = dB2 [26]. We also use the same symbols for the partial derivatives of the fields,

F1 = ∂C0, F3 = ∂C2, F5 = ∂C4 and H3 = ∂B2 as it should be clear from context which

one is meant. We will use normalization in which the RR flux from a Dp-brane satisfies,

∫

S8−p

⋆Fp+2 =
2κ2τpN

gs
, τp =

1

κ

√
π(4π2α′)(3−p)/2 , κ = 8π7/2gsα

′2 (4.1)

where Fp+2 is (p + 2)-form flux, τP is the Dp-brane tension, κ is the gravitational constant

in ten dimensions, α′ is the string scale (Regge slope), gs is the string coupling and N is

the number of Dp-branes.

For the stack of N regular and M fractional D3-branes we have

1

(4π2α′)2

∫

T 1,1

F5 = N ,
1

4π2α′

∫

S3

F3 = M. (4.2)

The bosonic part of type IIB classical effective supergravity action is then, in Einstein

frame,

S10 =
1

2κ2

∫
(

d10x
√
−G

[

R − 1

2
(∂Φ)2 − 1

2
g2
se

2ΦF 2
1 − 1

12
e−ΦH2

3 (4.3)

− 1

12
g2
se

ΦF̃ 2
3 − 1

4.5!
g2
s F̃

2
5

]

− 1

2
g2
sC4 ∧ F3 ∧ H3

)

,

where

F̃5 ≡ F5 + B2 ∧ F3 , F̃3 ≡ F3 − C0H3 , (4.4)
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G is the determinant of the metric in ten dimensions and R is the Ricci scalar. The 5-form

flux is required to satisfy the self duality constraint

⋆F̃5 = F̃5 (4.5)

and we write

F̃5 = F5 + ⋆F5. (4.6)

The corresponding equations of motion are

RMN =
1

2
∂MΦ∂NΦ +

1

2
g2
se

2Φ∂MC0∂NC0 +
1

4
e−Φ(H3)MOP (H3)

OP
N

+
1

4
g2
se

Φ(F̃3)MOP (F̃3)
OP
N +

1

96
g2
s(F̃5)MOPQR(F̃5)

OPQR
N

−GMN

(

1

48
e−ΦH2

3 +
1

48
g2
se

ΦF̃ 2
3 +

1

960
g2
s F̃

2
5

)

, (4.7)

d ⋆ dΦ = g2
se

2ΦF1 ∧ ⋆F1 −
1

2
e−ΦH3 ∧ ⋆H3 +

1

2
g2
se

ΦF̃3 ∧ ⋆F̃3, (4.8)

d ⋆ (e2ΦF1) = −eΦH3 ∧ ⋆F̃3, (4.9)

d ⋆ (eΦF̃3) = F5 ∧ H3, (4.10)

d ⋆ (e−ΦH3 − g2
sC0e

ΦF̃3) = −g2
sF5 ∧ F3. (4.11)

dF̃5 = H3 ∧ F3. (4.12)

The uppercase indices M,N, . . . above are for the ten dimensional spacetime coordinates

and GMN is the metric. Multiplying both sides of (4.7) by GMN gives

R =
1

2
(∂Φ)2 +

1

2
g2
se

2Φ(∂C0)
2 +

1

24
e−ΦH2

3 +
1

24
g2
se

ΦF̃ 2
3 . (4.13)

We note a few general features of the theory from the above equations of motion.

From (4.9) we see that the H3 and the F3 fluxes are perpendicular when C0 = 0, which

is the case in KS and we will set C0 = 0 in our analysis from now on unless when we

explicitly state otherwise. From (4.8) we see that the dilaton would be constant for a

precise matching of the H3 and F3 fluxes such that e−ΦH3 ∧ ⋆H3 = g2
se

ΦF3 ∧ ⋆F3. In the

case when the dilaton is taken constant, the equations of motion simplify and the solution

on a singular conifold was found by Klebanov and Tseytlin [20], with the singularity at

tip of the conifold where the radius of AdS5 (or T 1,1) vanishes. However, with the KS

picture in terms of Seiberg duality cascade, confinement via gaugino condensation at the

end of the cascade on the gauge theory side leads to a deformed conifold with the tip

being S3. In this case, the tip of the cone is smoothed out and cut off at some finite

r whose size depends of the magnitude of the ’t Hooft coupling in the confining gauge

group, gsM , which is related to the glueball superfield [27] with expectation value related

to the scale of the confining gauge theory. Thus one needs a metric and flux ansatz which

takes into account the interpolation between S3 at the tip and the asymptotically S2 × S3

geometry at large r. With a metric ansatz, one computes the Ricci scalar, and then equate

it to (4.13) to determine the geometry and obtain the Klebanov-Tseytlin solution [20]. A
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second special case is where the NS-NS flux H3 is turned on by wrapping NS5-branes on

S2 while both R-R fluxes F5 and F3 vanish and the equations are simplified. Now we

cannot have a constant dilaton, since the right hand side of (4.8) is nonzero. The solution

to this case with N = 1 supersymmetry was obtained by Maldacena and Nunez (MN) [28].

The KS solution on the deformed conifold with F5 and F3 fluxes turned on and the MN

solution with the H3 flux turned on are two well-known regular solutions on type IIB

background with N = 1 supersymmetry. A natural question was whether there existed a

flow between them. The possibility for this was analyzed and a metric and a flux ansatz for

it given by Papadopoulos and Tseytlin [29]. This issue was further investigated by Gubser,

Herzog and Klebanov [22] who found a leading order perturbative solution around the KS

solution. Butti, Grana, Minasian, Petrini, and Zaffaroni used SU(3) structures to find a

one parameter set of numerical solutions which flow in a direction from KS to MN [24].

4.2 Mapping gauge coupling running to supergravity flow

In this section we want to apply the gauge/gravity duality to map the renormalization

group flow of the gauge couplings to the running of the dilaton and the backreaction NS-

NS 2-form potential. We discuss how, with the inclusion of the corrections, the gauge

couplings in their renormalization flow may stay finite throughout the duality cascade.

The stack of M D5-branes wrapping S2 of the AdS5 ×T 1,1 background creates 3-form

flux through S3 which induces a backreaction 2-form potential B2 in the S2 cycle. The sum

of the two gauge coupling coefficients T+ ≡ T1 + T2, which can be taken as the effective

gauge coupling, is related to the effective string coupling containing the dilaton in the dual

gravity theory. The difference between the two gauge coupling coefficients T− ≡ T1 − T2

is nonzero because the ranks of the two gauge groups are different and it describes the

nonconformal nature of the theory. Indeed, T− must dictate the flows in both the gauge

and the gravity theories. We note that the supergravity equation of motion in the presence

of nonzero R-R F3 and F5 fluxes from the D3- and D5- branes could have a consistent set

of solutions only if the NS-NS 2-form potential B2 is nonzero. Indeed, the two parameters

T+ and T− on the gauge theory side are mapped to the effective string coupling and the

2-form potential B2 through the relations [19, 30],

T1 + T2 =
2π

gseΦ
, (4.14)

T1 − T2 =
2π

gseΦ
(b̂ − 1) =

2π

gseΦ
(b̄2(mod 2)) (4.15)

where

b̂ − 1 = b̄2 (mod 2), b̄2 = b2 − 1, (4.16)

and

b2 ≡ 1

2π2α′

∫

S2

B2. (4.17)

The variable b̄2 measures the deviation of T− from zero due to the backreaction B2

potential from where the two gauge couplings have equal magnitude in r1 < r < r0.

Therefore, the flow is such that b̄2 = 0 at the first point where the two couplings are equal.
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T
2 (2) SU(N

)

ln(r/r0)

b̂ = 2

b̂ = 0

T = 8π2

g2

ln(r1/r0)ln(r2/r0)

SU(N
+

M
)

0

SU(N
)

T1(
1)

T
2 (1)

T1(2
)

SU(N −
M

)

Figure 1: A schematic comparison of the flows of the couplings in SU(N + M) × SU(N) without

the corrections (dashed lines) versus that with the corrections to the anomalous mass dimension

(solid lines). Note that a Seiberg duality transition occurs when the flow of T
−

(1) = T1(1) − T2(1)

reaches a period in b2.

We will arrange the supergravity flow such that b2(r) vanishes at the edge of the throat,

r = r0, and 0 ≤ b̂ ≤ 2. Following from the quantization condition on H3, πb2 must be a

periodic variable with period 2π. This periodicity is crucial for the cascade phenomenon.

Note that b2 decreases as the theory flows towards the infrared (smaller r) and Seiberg

duality takes place when b̂−1 reaches −1. For r1 ≤ r < r0, we label the couplings as Ti(1),

where “1” labels the fact that the flow is in the first region, i.e., the couplings are for the

SU(N + M) × SU(N) gauge theory. We see from (3.12) and (3.13) that the running of

T1(1) and T2(1),

µ
∂T1(1)

∂µ
= 3M − 3

2

M2

N + M
, (4.18)

µ
∂T2(1)

∂µ
= −3M − 3

2

M2

N
, (4.19)

µ
∂T−(1)

∂µ
= 6M +

3

2

M3

N(N + M)
. (4.20)

The flows are illustrated in figure 1. Let us first consider the KS case without the corrections

to the anomalous mass dimension. Let us start at the value of r < r0 where b̂ = 1, b̄2 = 0

or b2 = −1, so that the two gauge couplings are equal. The dilaton Φ = 0 in KS and the

running of T1,2(1) is given by (4.18) and (4.19), with ±3M . As r decreases to r = r1,

T1 → 0, b̂ → 0, (4.21)

that is, g1 → ∞ when b2 → −2. With our notation, b̂ takes values between 0 and 2. At

r = r1, Seiberg duality transformation occurs, so T1(1) → T2(2) and T2(1) → T1(2). Now
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the flows correspond to that of the gauge theory SU(N)× SU(N −M), where T1(2) starts

decreasing (towards small r), that is, SU(N) is getting strongly interacting. Seiberg duality

transformation takes place when the strongly interacting coupling g1 is infinite. On the

other hand, the warped geometry in the supergravity side is completely smooth as we pass

through such a duality transition.

Now let us consider the case with the corrections included, with the flows of the

couplings given by (4.20) and schematically illustrated in figure 1 as solid lines. We see

that T1(1) is decreasing slower while T2(1) is increasing faster as r decreases. Note also

that (4.20) shows that T−(1) is flowing faster so, starting at r where the two couplings

are equal in r1 < r < r0, b2 reaches a period with the flow tilted with respect to the

case without the corrections as shown in figure 1, since the magnitude of the slope in the

running of T2 is greater than T1. The locations of duality transitions happen to occur

further away at smaller r with the running of both Φ and b2 is taken into account in the

gauge/gravity duality mapping as shown in figure 1. We will see that from the values of

rl in section 5. The first duality transition occurs when the effective number of D3-branes

drops such that the stronger gauge group changes from rank N + M to rank N . This

translates to a decrease in b2 by 2 units, which takes place at small but finite T1. For the

flow from the (l − 1)th to the lth cascade steps we have (3.12) and (3.13),

d

d ln(Λ/Λc)
T+ = −

(

Cl−2 + Cl−1

)

M, (4.22)

d

d ln(Λ/Λc)
T− =

(

6 + Cl−1 − Cl−2

)

M, (4.23)

where Λ is the scale of the gauge theory and Λc is the cutoff. The scale of the gauge theory

is mapped to the radial coordinate r of AdS5 in the dual gravity theory, so we have

Λ ∼ r. (4.24)

We note that the magnitude of the correction to the running of T− increases with increasing

l, since Cl−1 > Cl−2. This increase in the coefficient of the logarithmic running of T− will

lead to a change of the slope in the logarithmic running of the B2 potential which results

in a step in the 3-form NS-NS flux H3 and in the warp factor at a duality transformation.

Applying the derivative with respect to ln(r/r0) on (4.14) and (4.15), we obtain

d

d ln (r/r0)
e−Φ = −Sl, (4.25)

d

d ln (r/r0)

(

e−Φb̄2

)

= Dl, (4.26)

where r0 is the AdS5 radius at the edge of the throat and we have introduced two sets of

constants,

Sl ≡ (Cl−1 + Cl−2)
gsM

2π
, Dl ≡ (6 + Cl−1 − Cl−2)

gsM

2π
. (4.27)

Notice that S1 ∼ 1/K while the correction in D1 goes as 1/K2. Suppose the lth duality

transformation takes place at r = rl. First we can solve (4.25) for Φ(r) in the range r ≥ r1,

e−Φ(r) = e−Φ0 − S1 ln(r/rs) = 1 − S1[ln(r/r0) − c1] (4.28)
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where Φ0 may be absorbed into the definition of gs and c1 should be determined by an

appropriate boundary condition. Note that we have chosen Φ(rs) = Φ0 at some r = rs and

e−Φ(r0) = 1 + S1c1. We then have the solution for Φ in the range rl ≤ r ≤ rl−1 between

the (l − 1)th and the lth duality transformation locations,

e−Φ(r) = 1 + S1c1 −
l−1
∑

k=1

Sk ln(rk/rk−1) − Sl ln(r/rl−1), (4.29)

and Λ/Λc = r/r0. The values of rl will be computed using the change in magnitude

of b2. The leading term in the variation of e−Φ/gs with respect to ln(r/rl−1) comes at

O(M2/N) consistent with flux backreaction expectations [19]. Note that near the bottom

of the throat at r = rK−1, using ln(rk/rk−1) ∼ −1/gsM which we will see later, we have

e−Φ(rK−1) − e−Φ(r0) = −∑K−1
k=1 Sk ln(rk/rk−1) ∼ −(gsM

2/N)(−1/gsM) (N/M) = O(1)

and, therefore, the change in e−Φ from the edge to the bottom of the throat is O(1).

Our interest is first to show how kinks appear in the running of the dilaton and the

B2 potential which lead to steps in the H3 flux and in the warp factor. The expressions we

present are only approximate and good for the large r region. We will not attempt to find

the full supersymmetric solution on the supergravity side on the deformed/resolved conifold

here. We seek a UV approximate expression for b̄2(r) with b̄2(r0) = 1 (or b2(r0) = 0) at the

edge of the throat. This corresponds to the case in which the gauge coupling g1 just starts

getting stronger while g2 starts getting weaker as the theory starts flowing down from the

edge of the throat. We then obtain from (4.26) for r in the range rl ≤ r ≤ rl−1,

e−Φ(r)b̄2(r) ≈ e−Φ(rl−1)b̄2(rl−1) + Dl ln(r/rl−1). (4.30)

The lth duality transformation will occur at r = rl such that b̄2(rl) = −(2l − 1). With this

and expressing ln(r/rl−1) in terms of Φ, (4.30) gives

e−Φ(r)b̄2(r) ≈ −(2l − 3)e−Φ(rl−1) +
Dl

Sl

(

e−Φ(r0) −
l−1
∑

k=1

Sk ln(rk/rk−1) − e−Φ(r)

)

. (4.31)

The 2-form potential for the same range of r then follows from (4.17) and (4.30),

B2(r) ≈ b2(r)
πα′ω2

2
, (4.32)

where ω2 denotes the S2 cycle in T 1,1 = S2 × S3. The corresponding 3-form NS-NS flux

H3 = dB2 is, noting that ∂b2/∂r = ∂b̄2/∂r,

e−Φ(r)H3(r) ≈
(

Dl + Slb̄2(r)

)

πα′dr ∧ ω2

2r
, (4.33)

which has steps at Seiberg duality transformation locations, since the magnitudes of Dl

and Sl change across locations of duality transitions. Each time r decreases past rl, b̄2

drops by 2, as implied by Seiberg duality and (4.15). Note also that the steps in the flux

give steps in the metric as the two are related by equations such as (4.13). We will study

the steps in the warp factor in section 5.
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Finally we like to point out that the dictionary in the mapping between couplings

in the gauge and the gravity variables (4.14) and (4.15) should have corrections. Let us

discuss this point in some detail here. First consider the above mapping by introducing

the variables

t+ = t1 + t2 =
gse

Φ

2π
(T1 + T2) = 1, (4.34)

t− = t1 − t2 =
gse

Φ

2π
(T1 − T2) = b̂ − 1 (4.35)

Since

t1 =
b̂

2
, t2 =

2 − b̂

2
(4.36)

and t1, t2 ≥ 0, we see that 0 ≤ b̂ ≤ 2 and 1 ≥ t1, t2 ≥ 0. (This is illustrated in figure 1.)

Let us ignore corrections and start at the value of r < r0 where b̂ = 1 so that the two gauge

couplings are equal. As r decreases to r = r1,

t1 → 0 b̂ → 0, (4.37)

that is, g1 → ∞. In the KS case, the geometry is smooth as we cross the Seiberg duality

transition point. With the corrections coming from the anomalous mass dimension we have

here, the steps in the warp factor and the kinks in the dilaton introduces discontinuities.

Clearly, we expect such discontinuities to be smoothed out by further correction terms.

That is, we expect that the relations (4.14) and (4.15) should be modified by corrections.

For example, if the mapping (4.14) is not exact, then we expect either a correction on

the gravity side, or equivalently, a correction on the gauge theory side. If the gravity side

in (4.14) has a positive correction, either coming from α′ or quantum corrections, such a

correction will allow the flow of g1 to a large but finite value, as expected. We also expect

the anomalous dimension to depend on the scale Λ ∼ r. Such corrections should smooth

out the discontinuities in the warped geometry and the dilaton flow.

5. Warp factor with steps

We shall consider the UV region where the correction to the anomalous dimension is rela-

tively small. In this region, the effect of the deformation of the conifold is small, so we can

use the singular conifold geometry.

First we want to summarize the singular conifold metric for the sake of completeness

and clarification of our notation. The ten dimensional metric which describes the singular

AdS5 × T 1,1 geometry has the form

ds2 = H−1/2(r)ηµνdxµdxν + H1/2(r)(dr2 + r2ds2
T 1,1), (5.1)

where ds2
T 1,1 is the metric on the T 1,1 = S3×S2 base of the conifold which is parameterized

by five angles θ1, θ2 ∈ [0, π], φ1, φ2 ∈ [0, 2π], and ψ ∈ [0, 4π]. A compact notation of the
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metric and the cycles in T 1,1 is obtained by introducing the 1-forms [31, 3],

g1 =
1√
2
(e1 − e3) , g2 =

1√
2
(e2 − e4),

g3 =
1√
2
(e1 + e3) , g4 =

1√
2
(e2 + e4) , g5 = e5, (5.2)

where

e1 = − sin θ1dφ1 , e2 = dθ1 , e3 = cos ψ sin θ2dφ2 − sinψdθ2 ,

e4 = sin ψ sin θ2dφ2 + cos ψdθ2 , e5 = dψ + cos θ1dφ1 + cos θ2dφ2. (5.3)

The metric on T 1,1 can then be written as

ds2
T 1,1 =

1

6

4
∑

i=1

(gi)2 +
1

9
(g5)2

=
1

9

(

dψ +
2

∑

i=1

cos θidφi

)2

+
1

6

2
∑

i=1

(

dθ2
i + sin2 θidφ2

i

)

(5.4)

The S2 and S3 cycles of T 1,1 are represented by the following 2- and 3-forms

ω2 =
1

2
(g1 ∧ g2 + g3 ∧ g4) , ω3 =

1

2
g5 ∧ (g1 ∧ g2 + g3 ∧ g4) (5.5)

which give
∫

S3

ω3 = 8π2 ,

∫

S2

ω2 = 4π. (5.6)

Our notation is such that the inner product of a p-form ωp = 1
p!(ωp)M1...MpdxM1∧· · ·∧dxMp

satisfies

ωp ∧ ⋆ωp =
1

p!
(ωp)M1...Mp(ωp)

M1...Mp vol =
1

p!
ω2

p vol. (5.7)

where vol stands for the ten dimensional volume element which we write as

vol =
r5 sin θ1 sin θ2

√
H

108
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr ∧ dψ ∧ dθ1 ∧ dθ2 ∧ dφ1 ∧ dφ2

=
r5
√

H

108
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr ∧ g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5. (5.8)

Moreover, the above ten dimensional metric gives the Ricci scalar

R = − 1

2H3/2

(

H ′′ +
5

r
H ′

)

. (5.9)

As we have seen, the corrections lead to a running of the dilaton with the slope in the

logarithmic running of e−Φ changing across each cascade step. Moreover, the H3 flux has a

step-wise jump at each cascade step. In this section we want to find the resulting step-wise

corrections to the warp factor.

First let us recall the Klebanov-Tseytlin (KT) solution [20] on the singular conifold.

The N regular D3-branes induce flux through T 1,1, the M fractional D3-branes induce
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flux through S3, the backreaction H3 flux is through dr ∧ω2. With the quantization given

in (4.2),

F3 =
1

2
Mα′ω3, (5.10)

H3 =
3

2r
gsMα′dr ∧ ω2, (5.11)

F5 =
1

2
πα′2

(

N +
3

2π
gsM

2 ln(r/r0)

)

ω2 ∧ ω3. (5.12)

In this case,

H2
3 = g2

sF
2
3 =

243α′2g2
sM

2

H3/2r6
. (5.13)

The relation between F3 and H3 as given by (5.13) is valid only when the dilaton is constant

as we can see from one of the supergravity equations of motion given by (4.8). One then

puts (5.9) and (5.13) in (4.13), with Φ set to zero, and solves for H(r) to obtain the KT

solution [20],

H0(r) =
27πα′2gs

4r4

(

N +
3gsM

2

2π
[ln(r/r0) + 1/4]

)

, (5.14)

where, with the volume of T 1,1 given by vπ3 = 16π3/27,

r4
0 = 4πα′2gsN/v =

27πα′2gsN

4
(5.15)

and the locations of duality transitions in the KS throat are given by

rl = r0 exp

(

− 2lπ

3gsM

)

. (5.16)

Note that the constant piece N in (5.14) is determined by the boundary condition. We see

that the effective D3-brane charge is given by

Neff = N +
3gsM

2

2π
ln(r/r0) (5.17)

so that at r = rl, Neff = N − lM . The term with 1/4 factor is introduced to ensure that

the warp factor H0(r) is monotonic for r0 ≥ r ≥ rK .

Now let us proceed with the corrections included. First we want to find the locations rl

where the duality transformations take place. The relation between rl and rl−1 is obtained

remembering that b̄2(rl)− b̄2(rl−1) = −2 and b̄2(rl) = −(2l−1) which with (4.30) or (4.31)

gives the recursion relation

ln

(

rl

rl−1

)

= − 1

Dl

(

(2l − 1)e−Φ(rl) − (2l − 3)e−Φ(rl−1)

)

= − 2

Dl + Slb̄2(rl)
e−Φ(rl−1) = − 2

Dl − (2l − 1)Sl
e−Φ(rl−1), (5.18)

which gives

rl = r0 exp

[

−
l

∑

k=1

2

Dk − (2k − 1)Sk
e−Φ(rk−1)

]

(5.19)

– 18 –



JH
E

P
0

8
(2

0
0

7
)0

0
9

or combining with (4.29),

rl = r0 exp

[

−
( l

∑

k1=1

2

Dk1
− (2k1 − 1)Sk1

(5.20)

(

1 +

k1−1
∑

k2=1

2Sk2

Dk2
− (2k2 − 1)Sk2

(

1 +

k2−1
∑

k3=1

2Sk3

Dk3
− (2k3 − 1)Sk3

(

1 +

k3−1
∑

k4=1

2Sk4

Dk4
− (2k4 − 1)Sk4

(

· · ·
(

1 +
2S1

D1 − S1

))))))

e−Φ(r0)

]

.

For instance,

r1 = r0 exp

[

− 2

D1 − S1
e−Φ(r0)

]

, (5.21)

r2 = r0 exp

[

−
(

2

D1 − S1
+

2

D2 − 3S2

(

1 +
2S1

D1 − S1

))

e−Φ(r0)

]

. (5.22)

Next we would like to find the equation of motion for the warp factor. We will do that

without a need for computing the explicit expressions for the fluxes, since it is actually

H3/2H2
3 which will come in the equation of motion of the warp factor after combining (4.8)

and (4.13). If one needs to determine the fluxes explicitly, then it would be necessary to

decompose the fluxes with appropriate ansatz and solve all the supergravity equations of

motion consistently. First let us rewrite (4.8) and (4.13) with C0 = 0, the metric given

by (5.1) and the corresponding Ricci scalar (5.9),

(

Φ′′ +
5

r
Φ′

)

H =
1

12

(

eΦg2
s f̄ − e−Φh̄

)

, (5.23)

and

−
(

H ′′ +
5

r
H ′

)

= Φ′2H +
1

12

(

eΦg2
s f̄ + e−Φh̄

)

, (5.24)

where we have defined

f̄ ≡ H3/2F 2
3 , h̄ ≡ H3/2H2

3 . (5.25)

Whenever the dilaton runs, as in the case here, both sides of (5.23) are nonzero and

consequently ⋆F3 6= e−ΦH3/gs and the 3-form combination F3−ie−ΦH3/gs is not imaginary

self dual. We have already found h̄ from the gauge/gravity duality mapping, with (4.33)

and (5.25),

h̄ =
27π2α′2

r6

(

Dl + Slb̄2(r)

)2

e2Φ. (5.26)

Now we can use (5.23) to find eΦg2
s f̄ and substitute it into (5.24) to find the equation of

motion for the warp factor in terms of known quantities,

H ′′ +
5

r
H ′ + (Φ′2 + Φ′′ +

5

r
Φ′)H = −1

6
e−Φh̄. (5.27)
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The form of the equation of motion given by (5.27) holds for any H3 flux so far as all its

components are in the internal (extra) space. Because F3 drops out in combining (5.23)

and (5.24), it could have any components (and the f̄ terms could have additional factors of

H) so far as it is consistent with H3 having internal components and the fluxes satisfy the

Bianchi identity and the supergravity equations. The equation of motion (5.27) remains

valid, even if we turn on F1, since it drops out in the same way as F3 too. Moreover, it is

always possible to express the fluxes with all components in the internal space using the

democratic formulation [32]. We know from the running of the dilaton (4.25) that

Φ′ =
Sl

r
eΦ, Φ′′ =

S2
l

r2
e2Φ − Sl

r2
eΦ (5.28)

and (5.27) can be rewritten as

H ′′ +
5

r
H ′ +

2

r2
(S2

l e2Φ + 2Sle
Φ)H = −1

6
e−Φh̄. (5.29)

Thus we have obtained the equation of motion for the warp factor which contains only

variables we have determined in the gauge/gravity duality mapping.

Let us write h̄ and the warp factor H as

h̄ = h̄0 + δh̄, H = H0 + δH, (5.30)

where h̄0 = 243α′2g2
sM

2/r6 and H0 given by (5.14) are the corresponding values in the ab-

sence of corrections to the anomalous dimension. The equation of motion for the correction

term is then

δH ′′ +
5

r
δH ′ = Wl, (5.31)

where

Wl ≡ −1

6
(e−Φh̄ − h̄0) −

2

r2
(S2

l e2Φ + 2Sle
Φ)H0 (5.32)

Integrating (5.31) twice,

δH(r) = δH(r0) +

∫ r

r0

dr′

r′5

(

r5
0δH

′(r0) +

∫ r′

r0

dr′′r′′5Wl(r
′′)

)

, (5.33)

where the boundary values δH(r0) and δH ′(r0) need to be fixed appropriately such that

H = H0 when K → ∞ and H|M=0 = 27πα′2gsN/4r4 from the N D3-flux.

Here we will calculate the warp factor perturbatively to leading 1/K corrections. The

expressions we present in the remaining part of this section contain only leading corrections

in 1/K and higher order terms are ignored. Expanding the terms that come in (5.29)

or (5.32) for the flow from the (l − 1)th to the lth duality transition locations,

S2
l e2Φ + 2Sle

Φ =
3gsM

π

1

K
, (5.34)

e−Φh̄ =
243α′2g2

sM
2

r6

[

1+

(

9gsM

2π
ln

(

r

r0

)

− 3gsM

π
ln

(

rl−1

r0

)

−(2l−3)

)

1

K

]

.

(5.35)

– 20 –



JH
E

P
0

8
(2

0
0

7
)0

0
9

With (5.34) and (5.35) in (5.32), we have

Wl = −
A ln( r

r0
) + Bl

r6

1

K
, (5.36)

where

A =
243α′2g3

sM
3

π
, (5.37)

Bl =
243α′2g2

sM
2

π

(

−gsM

2
ln(

rl−1

r0
) +

(K − (2l − 3))π

6
+

gsM

16

)

(5.38)

or, equivalently, (5.34) and (5.35) with (5.30) in (5.29) give the equation of motion for

leading order corrections,

δH ′′+
5

r
δH ′+

6gsM

πr2

1

K
H0 = −81α′2g2

sM
2

2r6

(

9gsM

2π
ln

(

r

r0

)

−3gsM

π
ln

(

rl−1

r0

)

−(2l− 3)

)

1

K
.

(5.39)

The warp factor containing leading 1/K corrections can then be obtained either by

putting (5.36) in (5.33) and integrating, or by solving (5.29) with the boundary condi-

tion such that H|M=0 = 27πα′2gsN/4r4 from the N regular D3-branes and H = H0 when

K → ∞. The result is

H =
27πα′2

4r4

[

gsN +
3g2

sM2

2π

[

ln(
r

r0
) +

1

4

]

(5.40)

−
(

3g2
sM2

2π

[

ln

(

r

r0

)

+
1

4

][

3gsM

π
ln

(

rl−1

r0

)

+ (2l − 3) − 3gsM

8π

]

−9g3
sM

3

4π2

[

ln

(

r

r0

)

+ 2(ln

(

r

r0

)

)2 +
1

4

])

1

K

]

for the flow from the (l − 1)th to the lth duality transition locations.

To get an estimate of the sizes of the steps, let us consider the step at r = r1, where

r1 is given by (5.21), to leading order in 1/K,

ln(
r1

r0
) ≃ − 2π

3gsM

(

1 +
1

2K

)

(5.41)

The step in the warp factor at r1 comes from the difference between the warp factor H(1, r)

for the flow from r0 to r1 and the warp factor H(2, r) for the flow from r1 to r2. This follows

from (5.40),

H(1, r1) − H(2, r1) ≃ 27πα′2

4r4
1

(

3g2
sM

2

2π

[

ln

(

r1

r0

)

+
1

4

][

3gsM

π
ln

(

r1

r0

)

+ 2

])

1

K

≃ 27πα′2gsN

4r4
1

(

1 − 3gsM

8π

)

1

K3
. (5.42)

and the relative size of the step is

H(1, r1) − H(2, r1)

H(1, r1)
≃

(

1 − 3gsM

8π

)

1

K3
. (5.43)
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Figure 2: Warp factor plotted for parameters gs = 0.3, K = 100, M = 20, c = 0.0001 and

r0 = 100.

Thus the height of the step in the warp factor is of order 1/K3. The reasons for the

1/K3 order in the height of the step are the following. First, the correction in H(r)

itself comes at order 1/K. Second, the step comes in the difference between H(1, r) and

H(2, r) across a duality transition which gives an additional factor ∝ gsM/K effectively

coming from corrections to the location of the step. These two together give a factor

∝ (1/K)(gsM/K) = gsN/K3. We also note that there is a critical value of gsM , the warp

factor steps down for values of gsM such that gsM < 8π/3 and steps up for gsM > 8π/3

as the theory flows across r = r1 down toward the bottom of the throat. We connect the

steps with interpolating tanh function and write the warp factor given by (5.40) as

H(r) = H(1, r) +
K−1
∑

l=1

1

2

(

H(l + 1, r) − H(l, r)

)(

1 + tanh
[rl − r

rlc

]

)

, (5.44)

where H(l, r) is the warp factor given in (5.40) for the flow in the region from the (l− 1)th

to the lth duality transition locations and c is a parameter which describes the sharpness

of the steps. An illustration of the warp factor is shown in figures 2 and 3. The steps are

not visible in figure 2, since we have taken large K. A magnified plot of the first step in

the warp factor is shown for a relatively small value of K in figure 3.

6. D3-brane world volume effective action

In this section we like to discuss the D3-brane world volume effective action in the warped

geometry. In particular, we like to see how the steps in the warp factor from the Seiberg

duality cascade show up here. The presence of steps is actually very generic as a correction

to the approximate geometry for a warped throat. The action here may be used to study

how brane inflation can be implemented such that the steps may give possible stringy

signatures in the cosmic microwave background radiation in the KKLMMT inflationary

scenario. To be concrete, we shall present our discussion within the context of the KS

throat discussed above.
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Figure 3: A magnified plot of the first step at r = r1 in the warp factor for parameters gs = 0.3,

K = 5, M = 20, c = 0.0001 and r0 = 100.

In the KKLMMT scenario, inflation takes place when a D3-brane moves in the throat.

The inflaton is the location of the D3-brane from the bottom of the throat. The D3-

potential gets contributions from a Dirac-Born-Infeld (DBI) term and a Chern-Simons

term in the action, as well as possible terms due to a presence of D3-brane sitting at the

bottom of the warped deformed throat. The DBI term contains e−Φ while the Chern-

Simons term does not. When the dilaton is constant, as in the KS solution, the two terms

cancel out and the D3-potential vanishes in the absence of a D3-brane. Consequently, one

needs other sources such as D3-brane to attract the D3-brane. Here we can have a dilaton

driven inflation, since the dilaton runs and the D3-potential is dynamically nonzero.

Presumably, we are interested in inflation that takes place when r < r0, where r0 is the

location of the edge of the throat. Thus, given r0, we can determine all the other duality

transition locations rl and the bottom of the throat is at rA ≈ rK . In the large K limit

and for small l, the corrections may be very small.

Including the expansion of the universe, the 10-dimensional metric takes the form:

ds2 = H−1/2(r)(−dt2 + a(t)2dx2) + H1/2(r)(dr2 + r2ds2
T 1,1) (6.1)

Here the cosmic scale factor a(t) is that of an expanding homogeneous isotropic universe

spanned by the 3-dimensions x, and r is the coordinate for the flow in the throat. The

metric ds2
T 1,1 is for base of the conifold. Warped spaces are natural in string theory models

and are useful for flattening potentials and for generating a hierarchy of scales with the UV

at the top (edge) of the throat and the IR scale at the warped bottom (around r ∼ rA).

Crudely, H(r) ∼ (r/R)−4, where R ≫ rA is the scale of the throat. The expression for the

action includes the dilaton Φ, the metric GMN , the anti-symmetric tensor BMN and the

gauge field FMN . The Chern-Simons term contains couplings between the brane and R-R

fields (p-forms) Cp, with p even for type IIB theory. We use variable ξ and indices {a, b}
for coordinates and quantities on the brane and we have

SD3 = −T3

∫

d4ξe−Φ
√

det|Gab + Bab + 2πα′Fab|±µ3

∫

M4





4
∑

p=0

Cp



∧tr
[

e2πα′F+B
]

(6.2)
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where T3 = [(2π)3gsα
′2]−1 is the tension of a D3-brane. Here gs is the string coupling and

the Regge slope α′ = m−2
s sets the string scale, where ms is the string mass scale. The

quantities inside the determinant have been pulled back onto the brane and the ± is for

a brane/anti-brane. In particular, note that the pulled back metric (Gab) will contain the

warp factor. In the second term µ3 = gsT3 is the brane charge. The integration is over the

D3-brane world volume, and contributions should, of course, have the correct dimension.

In the simplest cases, many of the fields appearing in (6.2) are trivially zero. However, for

more interesting solutions we will need to solve the supergravity equations to find each of

the fields.

We now consider the simple case with vanishing pullbacks Bab and Fab, and only C4

non-zero (D3-branes are charged under the 4-form RR field C4). The D3-brane alone in

this background is supersymmetric. In addition, the supergravity equations require that

components of C4 on the brane be 1/H(r)gs. We have aligned the brane coordinates with

the usual space-time coordinates so that the only non-zero derivatives in the pullback are

those with respect to time, and we assume that only the radial motion of the brane is

important. Then (6.2) simplifies to

SD3 =

∫

d4x
a3(t)T3

H(r)

(

−e−Φ
√

1 − H(r)ṙ2 + 1
)

. (6.3)

For slow motion along r, this reduces to

SD3 ≈
∫

d4xa3(t)T3

(

e−Φ ṙ2

2
− 1

H(r)
(e−Φ − 1)

)

. (6.4)

We see that the D3 potential VD3(r) = (e−Φ(r) − 1)/H(r) vanishes for constant dilaton

Φ = 0.

The inflaton φ is related to the position of a space-time filling D3-brane moving in

such a throat. Specifically,

φ =
√

T3r (6.5)

so we have the following inflaton action in the slow-roll regime,

SD3 ≈
∫

dx4a3(t)

[

e−Φ(φ) φ̇
2

2
− T3

H(φ)
(e−Φ(φ) − 1)

]

, (6.6)

where Φ(r) → Φ(φ) and H(r) → H(φ).

The kinetic term in this action has the form considered in [33]. The potential is similar

to that considered in [34]. Effects of features in the inflaton potential were also studied

in [35]. Note that the D3-potential term in (6.6) vanishes for Φ = 0. One may consider

two possibilities: (1) Φ = 0 as the asymptotic value of the dilaton at large r. That is,

the D3-brane is mobile in the bulk away from the throat; (2) Φ = 0 at the bottom of the

throat, so the D3-brane is BPS there.

Here we take Φ = 0 at r = r0 or 1 + S1c1 = 0. We can always add an inflaton mass

term if necessary. Using (4.29),

d

dt
e−Φ = −Sl

ṙ

r
= −Sl

φ̇

φ
. (6.7)

– 24 –



JH
E

P
0

8
(2

0
0

7
)0

0
9

Now we connect the steps in the D3-brane potential with an interpolating tanh function.

First let us write the D3-brane potential for the flow between rl−1 to rl as

VD3(l, r) = T3
e−Φ(l,r) − 1

H(l, r)
, (6.8)

where we use H(l, r) given by (5.40),

H(l, r) =
27πα′2

4r4

[

gsN +
3g2

sM
2

2π

[

ln

(

r

r0

)

+
1

4

]

(6.9)

−
(

3g2
sM

2

2π

[

ln

(

r

r0

)

+
1

4

][

3gsM

π
ln

(

rl−1

r0

)

+ (2l − 3) − 3gsM

8π

]

−9g3
sM

3

4π2
[ln

(

r

r0

)

+ 2

(

ln

(

r

r0

))2

+
1

4

])

1

K

]

,

and Φ given by (4.28), (4.29),

e−Φ(l,r) = 1 + S1c1 −
l−1
∑

k=1

Sk ln(rk/rk−1) − Sl ln(r/rl−1). (6.10)

We then connect the steps with interpolating tanh function and write the D3-brane po-

tential given by (6.8) as

VD3(r) ≈ VD3(1, r) +

K−1
∑

l=1

1

2

(

VD3(l + 1, r) − VD3(l, r)

)(

1 + tanh
[rl − r

rld

]

)

, (6.11)

where again K ≡ N/M . We expect the steps to be smoothed out by the scale at the

Seiberg duality transition, namely, Λl ∼ rl, so we introduce the width dl = rld, where the

parameter d measures the sharpness of the steps, with smaller d corresponding to sharper

steps. As the theory flows to smaller AdS5 radius toward the bottom of the throat, rl

decreases, so the steps are becoming sharper.

The height of the first step in the potential follows from (5.42) and (6.8),

VD3(1, r1) − VD3(2, r1) = T3

(

H(2, r1) − H(1, r1)

H(1, r1)H(2, r1)

)

(e−Φ(r1) − 1)

≃ − 4T3r
4
1

27πα′2gsN

(

1 − 3gsM

8π

)

1

K4
(6.12)

and the absolute magnitude of the step is of leading order 1/K4. The relative change in

the potential at r = r1 is

δVD3

VD3
=

(

VD3(1, r1) − VD3(2, r1)

VD3(1, r1)

)

=

(

H(2, r1) − H(1, r1)

H(2, r1)

)

≃
(

3gsM

8π
− 1

)

1

K3
. (6.13)

and the relative size of the step is of order 1/K3. An illustration of the D3-brane potential

VD3 is shown in figures 4. The steps are not visible on the plot, since we have taken large
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Figure 4: D3-brane potential plotted for parameters gs = 0.3, K = 100, M = 20, d = 0.0001 and

r0 = 100.

K. The potential we have here steps up for values of gsM such that gsM < 8π/3 and steps

down for gsM > 8π/3 as the theory flows across r = r1 down toward the bottom of the

throat.

Since the step sizes are O(1/K4) while the dilaton running starts at O(1/K), it is

useful to consider the potential without the steps. For r0 ≥ r ≥ r1,

VD3(φ) ≃ −32π2φ4 (ln(φ/φ0) − 1/4 − 1/16u)

27KM [u + ln(φ/φ0) + 1/4]
, (6.14)

where

u = 2πK/3gsM.

Note that we have fixed the constant in (4.28) to be c1 = 1/4 + 1/16u so that VD3(φ) is

monotonic in the range we are interested in.

φA ≃ φK = φ0e
−2πK/3gsM = φ0e

−u (6.15)

H(φK) = e4u/4u (6.16)

so at the edge,

VD3(φ0) = T3/4u.

There are 5 parameters here: α′, gs, K, M and d. It is also reasonable to expect that

the D3-brane is BPS at the bottom of the throat, φ = φA. In this case, ΦA = Φ(φA) = 0

and c would be determined in terms of the other parameters. Here we have set Φ = 0 at

the edge of the throat, r = r0.

If the inflaton is moving relativistically, the NS-NS term in VD3(φ) becomes part of

the DBI kinetic action and so VD3(φ) → −T3/H. This interesting case should be studied

carefully.

As the D3-brane moves across a step, it would generate oscillations in the angular

power spectrum of density perturbations. Moreover, for K big enough such that we could
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see two or three steps, it might be possible to correlate the steps and make some definitive

predictions. In comparing with [34], we see that the warp factor and so VD3(φ) can be quite

sensitive to the details of the throat geometry. This fact should be taken into account in

any model comparison to cosmological data.

In the D3-D3-brane inflationary scenario, there is a D3-brane sitting at the bottom

of the throat at φ = φA. So we should introduce VDD̄(r); this is independent of Φ, so it is

not modified from the KS case.

V (φ) = VDD̄(φ) + VD3(φ), (6.17)

VDD̄(φ) = V0

(

1 − 27

64π2

V0

φ4

)

,

V0 = 2T3/H(φK) = 8T3ue−4u,

where the constant term V0 is the effective vacuum energy. Additional terms coming from

the Kähler potential may be present. Such terms may also have strong dependence on the

dilaton.

7. The warped deformed/resolved conifold

The deformation of the conifold via gaugino condensation in the gauge theory in the KS

throat is related to a geometric transition in the gravity theory where the S2 ⊂ T 1,1 cycle

shrinks to zero size, the M number of D5 branes wrapping S2 disappear and are replaced

by flux through S3 ⊂ T 1,1. Thus the tip of the deformed conifold is S3. The metric which

describes the deformed conifold thus involves an interpolation between T 1,1 at large r and

S3 at the tip of the conifold. However, it was later discussed that a flow to a baryonic

branch with a quantum deformed moduli space of SU(2M)× SU(M), in the case where N

is an integral multiple of M , might be the preferred route of the flow [22, 24]. In the MN

case, N = 1 supersymmetric gauge theory was obtained by wrapping NS5-branes on S2. A

metric and flux ansatz which could give an interpolating solution between KS and MN was

put forward in [29]. A leading order perturbative expansion around the KS solution was

found in [22]. Later, SU(3) structures were used to find a one parameter set of solutions

which flow in a direction from KS to MN [24]. We used Einstein frame in previous sections.

In this and the next section, we will be using the string frame and also absorb gs in eΦ.

The metrics in the two frames are related by GMN (string) = eΦ/2GMN (Einstein).

7.1 SU(3) structures

In this section we will briefly review the basic ideas in applying SU(3) structures to study

supergravity backgrounds with torsions. The study of supersymmetry conditions for su-

pergravity backgrounds with torsion was initiated by Strominger [37]. See [38 – 40, 24] for

details on applying group structures to supergravity.

Consider a compactification of type IIB strings on R(1,3)×Y , where Y is a compact six

dimensional manifold. The Clifford algebra in ten dimensions is described by ten 32 × 32

gamma matrices. Let us denote these gamma matrices by ΓM , where the uppercase letters

– 27 –



JH
E

P
0

8
(2

0
0

7
)0

0
9

M,N, · · · run over 0, 1, · · · , 9. The gamma matrices satisfy {ΓM ,ΓN} = 2GMN , where

GMN is the metric. The generators of the Lorentz group Spin(1, 9) on R(1,3) × Y can be

constructed as commutators of the gamma matrices. The spinor representation in 10-d is

given by Γ(10) = Γ0Γ1 · · ·Γ9. The Lorentz algebra decomposes to Spin(1, 3) × Spin(6) on

R(1,3) × Y . We can write Γ(10) = Γ(4)Γ(6), where Γ(4) = −iΓ0 · · ·Γ3 and Γ(6) = iΓ4 · · ·Γ9

denote the spinor representations on R(1,3) and on Y respectively. There are two spinors of

the same chirality in IIB which decompose under Spin(1, 3)×Spin(6) as ǫ1 = ζ+η1
+ + ζ−η1

−

and ǫ2 = ζ+η2
+ + ζ−η2

−, where ζ+ is the spinor on R(1,3), ηi are the spinors on Y , ζ− =

ζ+
∗, and ηi

− = ηi
+
∗
. The number of supersymmetries in 4-d depends on the structure

group on Y . A generic Y with structure group SO(6) ∼ SU(4) has no globally defined

covariantly constant spinor and gives no supersymmetry. The spinor representation of

SO(6) corresponds to the fundamental representation of SU(4) which decomposes as 1⊕ 3

under SU(3). Thus there is one globally defined SU(3) singlet spinor on Y . In order to

preserve some supersymmetry, Y needs to have a reduced structure group and to preserve

N = 1 supersymmetry the structure group on Y has to be reduced at least to SU(3). In that

case, if we denote the one SU(3) singlet spinor mentioned above by η+, the two spinors η1,2
+

are complex proportional and are related to the invariant spinor in terms of two complex

functions α and β which can be expressed as η1
+ = 1

2(α+β)η+ and η2
+ = 1

2i(α−β)η+. If Y

is a Calabi-Yau threefold, the globally invariant spinor would also be covariantly constant

and depend trivially on the tangent frame bundle on Y and these two spinors give N = 2

supersymmetry in four dimensions.

However, when fluxes are turned on, the geometry backreacts and develops torsion

and Y could in general become non-Ricci-flat and non-Kähler. When the extra space

is compactified on a generalized Calabi-Yau with SU(3) structures, the fluxes from the N

regular and M fractional D3-branes give rise to torsions which fall in various representations

of SU(3). In the presence of fluxes, the spinor η+ is not covariantly constant with respect

to the Levi-Civita connection but would be so with a connection which includes torsion.

The components of the torsion fall into the SU(3) representations (3 + 3̄) ⊗ (3 + 3̄ + 1) =

(8+8)⊕(6+6̄)⊕(3+3̄)⊕(3+3̄)⊕(1+1). On the other hand, there are two SU(3) singlets on

Y , one is a fundamental 2-form which describes the almost complex structure and the other

is a globally non-vanishing holomorphic 3-form. Unlike the case of Calabi-Yau threefolds,

these 2- and 3-forms are not closed now and the different components of the torsion come in

dJ and dΩ. dJ has 20 components and decomposes under SU(3) as (6+6̄)⊕(3+3̄)+(1+1),

and dΩ transforms as a 24 of SU(4) and decomposes under SU(3) as (8+8)⊕(3+3̄)+(1+1).

Similarly the fluxes can be decomposed into different components in representations of

SU(3). The different components of the torsion which fall in representations of SU(3) need

to vanish or get balanced by fluxes of the corresponding forms and representations in order

to preserve N = 1 supersymmetry. This gives constraints on the relations among the

parameters α and β, the fluxes and the metric.

Next we want to see the torsion components in the variations of the fundamental 2-form

and the holomorphic 3-form when Y has SU(3) structures. Suppose we have parameterized
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the metric on Y as

ds2
6 =

6
∑

m=1

G2
m, (7.1)

where Gm are real differential 1-forms which are not closed here. Lower case indices

m,n, · · · run over 1 to 6 here. Let us then define

Z1 = G1 + iG2, Z2 = G3 + iG4, Z3 = G5 + iG6. (7.2)

We can then write the fundamental 2-form J and the holomorphic 3-form Ω as

J =
i

2

3
∑

i=ī=1

Zi∧Z̄ī, (7.3)

Ω = Z1∧Z2∧Z3. (7.4)

The i is for holomorphic indices which run over 1 to 3, and the ī is for the corresponding

anti-holomorphic indices. However, the Zi’s are not differentials of complex coordinates

and we will need to impose constraints in order to make Y a complex manifold. Note that

J transforms as (1, 1) and Ω transforms as (3, 0). The complex and Kähler structures on

Y are determined by the properties in the variations of J and Ω. But it is easy to see that

dJ has components with forms (2, 1) ⊕ (1, 2) ⊕ (3, 0) ⊕ (0, 3) in the Zi’s. Moreover, dΩ

has components with (3, 1)⊕ (2, 2) forms; it does not have a (4, 0), since a complex 4-form

vanishes in three complex dimensions. When Y has SU(3) structures, the components can

further be broken down to representations of SU(3). The (3, 0) ⊕ (0, 3) forms in dJ fall in

the singlet representation, the (1, 2)⊕(2, 1) forms fall in the (6⊕3)⊕(6̄⊕ 3̄) representations.

The (3, 1) form in dΩ falls in the 5̄ representation and the (2, 2) form falls in the 8 ⊕ 1

representations. All in all,

dJ = −3

2
Im(W

(1)
1 Ω̄) + (W

(3)
4 + W

(3̄)
4 ) ∧ J + (W

(6)
3 + W

(6̄)
3 ), (7.5)

dΩ = W
(1)
1 J2 + W

(8)
2 ∧ J + W

(3̄)
5 ∧ Ω, (7.6)

where the W ’s denote components of the torsion. If Y is a Calabi-Yau manifold, then

both J and Ω are closed, dJ = 0 and dΩ = 0, and all torsion components vanish. Thus

nonvanishing components of the torsion measure the departure of the manifold from being

Calabi-Yau. The fluxes can also be decomposed as

H3 = −3

2
Im(H

(1)
3 Ω̄) + (H

(3)
3 + H

(3̄)
3 ) ∧ J + (H

(6)
3 + H

(6̄)
3 ), (7.7)

F3 = −3

2
Im(F

(1)
3 Ω̄) + (F

(3)
3 + F

(3̄)
3 ) ∧ J + (F

(6)
3 + H

(6̄)
3 ). (7.8)

If Y is to be a complex manifold, the (3, 0) and (0, 3) components of dJ and the (2, 2)

components in dΩ must vanish which amount to demanding W
(1)
1 = 0 and W

(8)
2 = 0.
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7.2 Equations of motion in the 6 ⊕ 6̄ sector

The constraint on the relation between the fluxes and the torsions were found in [24].

It will be enough for our purpose here to focus only on the equations of motion in the

6 ⊕ 6̄ sector. In particular the equations of motion for flux and torsion components in

the 6⊕ 6̄ representations are the following three complex equations, of which only two are

independent,

(α2 − β2)W
(6)
3 = 2αβeΦF

(6)
3 , (7.9)

(α2 + β2)W
(6)
3 = −2αβ ⋆6 H

(6)
3 , (7.10)

(α2 − β2)H
(6)
3 = (α2 + β2)eΦ ⋆6 F

(6)
3 . (7.11)

A one parameter of numerical solution for the supersymmetry conditions using the

ansatz in [29] was obtained in [24] for the case of α real and β imaginary, where the

varying parameter arises from different possible values of the boundary value of dilaton at

the very edge (or the very bottom) of the throat and the vacuum expectation value of the

axionic scalar moduli field on the quantum deformed moduli space in the baryonic branch.

We will see later that the supergravity side containing the corrections to the anomalous

mass dimension from the gauge theory side does not fall into this solution. We will also

see in the next section the implications of the corrections in terms of SU(3) structures.

For now, a simple way to see that the supergravity flow we have here is different is simply

to note that the leading order correction to the running of the dilaton in (4.29), if we

just consider the flow in the range r1 ≤ r ≤ r0 and define t̃ ≡ ln(r/r0), comes at O(t̃),

which is different from the flow found in [22] and [24], where the leading order correction

to the running of the dilaton comes at O(t̃2). It will be important to construct the full

dual supergravity background and flow corresponding to the supersymmetric gauge theory

containing corrections to the anomalous mass dimension.

8. Gravitational source for Seiberg duality transformations

Now we want to see that the locations where Seiberg duality transformations occur have a

geometric obstruction with a jump in the relation between the two complex proportional

spinors η1,2
+ on the six dimensional manifold Y . Conversely, this geometric obstruction

provides “special” locations on Y which source Seiberg duality transformations. First let

us see the magnitudes of the “charges” (or the sizes of the steps) which come from the

differences in the slopes in e−ΦB2 given by (4.30) and (4.32) after and before a Seiberg

duality transformation,

(

Dl+1 − Dl

)

πα′

2
= (Cl + Cl−2 − 2Cl−1)

gsMα′

4

=
3gsMα′

4(K − l)(K − l + 1)(K − l + 2)
(8.1)

Note that, in the early stages of the duality cascade, the jump is of order O(1/K3) and

is quite small for large K. The magnitude increases as l increases, and the maximum
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value occurs at the last duality transformation where (CK−1 + CK−3 − 2CK−2) = 1/2 for

N = KM . If we sum up the charges at each step, the magnitude of the total charge from

the K − 1 duality transformations is proportional to

K−1
∑

l=1

(Cl + Cl−2 − 2Cl−1) =
3

4

(K − 1)(K + 2)

K(K + 1)
=

3

4

(

1 − 2

K(K + 1)

)

. (8.2)

We see that in the limit K → ∞, (8.2) goes to 3/4. Of this the (K − 1)th duality transfor-

mation takes 1/2 and the (K − 2)th duality transformation takes 1/8. Presumably, these

charges come from NS5-branes. Most of the charge is located in the bottom region of the

throat. Moreover, the magnitude of the charges confirms that the theory flows to a bary-

onic branch rather than to a confining branch and the duality cascade ends with the gauge

group SU(2M)×SU(M), in the case where N is an integral multiple of M . That is because

an additional duality transformation would need an infinite amount of charge, since (8.1)

diverges for l = K. This implies either that the perturbative expansion of the anomalous

dimension in powers of M2/N(N + M) is invalid here, or that the duality cascade stops

at the baryonic branch. This latter case also agrees with the discussion and expectation

in [22] and [24] of a flow along a baryonic branch. Recall that Seiberg duality in N = 1

supersymmetric SU(Nc) gauge theory with Nf flavors takes place in the so-called confor-

mal window 3Nc > Nf > 3Nc/2 and in the free magnetic phase 3Nc/2 ≥ Nf > Nc + 1.

To satisfy the last condition, K > 2. So we expect the last transition to take place at

SU(3M) × SU(2M) → SU(M) × SU(2M) and not go any further. This is consistent with

our analysis.

The torsion and the flux components in the 6 ⊕ 6̄ sector for the ansatz given in [29]

and used in [24] can be schematically written as W
(6)
3 = WR + iWI , H

(6)
3 = HR + iHI , and

F
(6)
3 = FR+iFI and be split into two sets where the elements of a set have components in the

same directions: (WR, FI , ⋆6FR, HR, ⋆6HI) and (WI , FR, ⋆6FI , HI , ⋆6HR) [41]. In other

words, the elements in the first set, WR, FI , · · · have components along some directions such

as G1∧G3∧G6 while the elements in the second set, WI , FR, · · · have components along

other directions such as G1∧G3∧G5. If we let α and β have arbitrary phase θ between them

and write β = tan w
2 eiθα, then the equations of motion in the 6 + 6̄ sector, (7.9)–(7.11),

give
(

1 − tan2 w

2
cos 2θ

)

WR = −2 tan
w

2
eΦ sin θ FI , (8.3)

(

1 − tan2 w

2
cos 2θ

)

WI = 2 tan
w

2
eΦ sin θ FR, (8.4)

tan2 w

2
sin 2θ WI = 2 tan

w

2
eΦ cos θ FR, (8.5)

− tan2 w

2
sin 2θ WR = 2 tan

w

2
eΦ cos θ FI , (8.6)

(

1 − tan2 w

2
cos 2θ

)

HR = eΦ

(

1 + tan2 w

2
cos 2θ

)

⋆6 FR, (8.7)

(

1 − tan2 w

2
cos 2θ

)

HI = eΦ

(

1 + tan2 w

2
cos 2θ

)

⋆6 FI , (8.8)
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tan2 w

2
sin 2θ HI = −eΦ tan2 w

2
sin 2θ ⋆6 FI , (8.9)

− tan2 w

2
sin 2θ HR = eΦ tan2 w

2
sin 2θ ⋆6 FR. (8.10)

We see that the equations of motion are over-constrained and do not have solution for

generic values of θ unless θ = ±π
2 (or for θ = 0, π with the fluxes and the torsions relabeled

or related by S-duality).

In order to study the solutions which describe the effects of corrections to the anoma-

lous mass dimension on the supergravity side, one needs a more general ansatz such as a

complexification of the components FR, FI , HR and HI above and/or turning on F1 flux in

such a way that arbitrary phase between the two spinors could be accommodated. That is

because the corrections change the imaginary self-duality condition in the 3-form combina-

tion F3−ie−ΦH3 in the KS solution in such a way that the supergravity flow does not occur

at a fixed phase between the two spinors. The change in magnitude of corrections after a

Seiberg duality transformation leads to a step in the function tan (w/2) eiθ which relates

the two spinors. This results in a geometric obstruction. These special geometric locations

and the charges on them provide a gravitational source for Seiberg duality transformations.

9. Discussions

The gauge/gravity duality implies that the nonperturbative dynamics of the gauge theory

knows about the string background geometry. Here we have studied the implications of

corrections to the anomalous mass dimension in the physical running of the couplings in

the gauge theory to the dual gravity theory in the KS throat. We find that a more precise

anomalous dimension on the gauge theory side reveals structures on the gravity side. The

corrections make the dilaton and the potentials run with kinks and the fluxes and the

metric have steps and the deviation from KS grows more and more as the duality cascade

proceeds and the theory flows down to the bottom of the throat.

The magnitudes of the charges at the steps (or the sizes of the steps) are much smaller

in the early stages of the cascade than in the last steps. The magnitudes of the charges

confirm that the theory flows to a baryonic branch rather than to a confining branch and

the duality cascade ends with the gauge group SU(2M) × SU(M), in the case where N

is an integral multiple of M . That is because an additional duality transformation would

require an infinite charge or a step with infinite size. This is consistent with what we would

expect from the gauge theory side, since if we think of the SU(M) in SU(2M) × SU(M)

as a weakly gauged flavor symmetry, we have SU(2M) with 2M flavors which falls far

outside Seiberg’s electric-magnetic duality window. Rather, it has a quantum deformed

moduli space [36]. This also agrees with the discussion and expectation in [22] and [24] of a

flow along a baryonic branch. Conversely, a duality cascade ending in the baryonic branch

supports our premise that the anomalous dimension changes after every Seiberg duality

transformation as the matter content of the theory changes with the SU(2M) × SU(M)

not undergoing a duality transformation.

The steps also provide special locations with geometric obstructions which source

Seiberg duality transformations. The steps we have discussed here are sharp because a
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Seiberg duality transformation occurs at a fixed T 1,1 base (or AdS5 radius). The steps

in the fluxes and the metric could be smoothed out if the charges at the steps get redis-

tributed and a Seiberg duality transition takes place over some range of scales or AdS5

radius. Conversely, the sharpness of the steps on the gravity side would provide a measure

for the sharpness of Seiberg duality transitions on the gauge theory side. Overall, we expect

that the relations (4.14) and (4.15), i.e., the gauge/gravity duality dictionary, should be

modified by corrections. This is an important problem to be studied further.

It is believed that NS5-brane charges are located at the bottom of the KS throat.

The NS5-branes wrap an S2 of the S3. In the absence of fluxes, they wrap a shrinking

S2 of the S3 at, say, angular coordinate ψ = 0 and essentially vanish without a trace. If

such NS5-brane can tunnel to the other pole of the S3,i.e., ψ = π, it becomes M D3-

branes [42]. Since there are K NS5-branes, together there are N = KM D3 charges. Our

picture suggests that these K NS5-branes are located at different positions, one at each

r = rl. Furthermore, they are at different locations of the S3, that is, they wrap different

shrinking S2s of the S3. As a consequence, H3 is in general no longer orthogonal to F3,

which is the case with a non-zero R-R 1-form flux F1.

In this paper, we work with the ansatz that, for large r, H3 is along the direction of

dr∧ω2. Although we need only the magnitude of F3 (as given by (5.23) and (5.24)) to find

the warp factor, it is important to find the components of F3 (since F3 does not all lie in

ω3) and an explicit solution of the supergravity equations, even if only perturbatively in

1/K.

The gauge/gravity duality is a powerful tool to probe both the gauge and the dual grav-

ity theories from different directions. It seems that the best way to test/use gauge/gravity

duality is an attempt to find the gravity dual to QCD. However, our theoretical control is

best when we consider super Yang-Mills theories. Unfortunately, lattice gauge theory for

super Yang-Mills theories is too rudimentary to be useful at the moment. Since Seiberg

duality and gauge/gravity duality are strongly believed but not proven, it is quite amazing

and useful that the whole notion of Seiberg duality and gauge/gravity dualities may be

tested in cosmology. If our universe indeed resides at a bottom of such a warped deformed

throat, the cosmological implication of this step-wise (or cascading) behavior of the metric

on the brane inflationary scenario and the cosmic microwave background radiation can be

very interesting.
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